
Writing Infrastructures | Quigley et al

242

Writing

Infrastructures:

GitHub in the Technical and Professional
Communications Classroom

Stephen J. Quigley1, Esther Lui2, Samantha Whelpley3, and
Joseph Flot4

1 University of Pittsburgh
2 National Taiwan Normal University
3 VISIMO
4 University of Pittsburg

Abstract
GitHub provides a project hosting platform and Git-based version control
system for individuals and teams looking to develop and manage software
and documentation online. Technical writers have long played an
important role in this process, contributing the documentation
infrastructure that organizes and sustains project development. As
GitHub continues to grow in popularity, the field of technical and
professional communication (TPC) educators will need to devote more
effort to researching GitHub while developing both critical pedagogies and
industry best practices committed to design justice. This paper provides a
primer for this discussion as well as tools and scaffolding designed to assist
GitHub implementation in the TPC classroom.

243 Reflections | Volume 22, Issue 1, Fall 2022

GitHub provides a project hosting platform and Git-based version
control system for individuals and teams looking to develop and
manage software and documentation online. Technical writers
have long played an important role in this process, contributing the
documentation infrastructure that organizes and sustains project
development. As GitHub continues to grow in popularity, from 73
million users in 2021 to an expected 100 million by 2025 (GitHub
2021), the field of technical and professional communication (TPC)
educators will need to devote more effort to researching GitHub
while developing both critical pedagogies and industry best
practices committed to design justice. This paper provides a primer
for this discussion as well as tools and scaffolding designed to assist
GitHub implementation in the TPC classroom. We begin by
situating GitHub in relation to TPC discussions of technical skills
and coding literacy, then offer an introduction to GitHub as a
platform, site of analysis, and teaching tool. Next, we provide
descriptions of sample assignments that can be used to scaffold
code literacy in the TPC classroom and share student GitHub
project narratives. Finally, for readers who wish to learn more
about GitHub and/or adapt sample assignments and projects, and
in the hope that the field will continue to build on this work, we
offer resources from an open-source GitHub workshop we
facilitated at the 2021 ATTW Conference.

GitHub in the Technical Communications
Classroom

Technological innovation presents ongoing challenges to TPC
educators who must monitor industry tools and trends while
judging whether and how to address these innovations in the
classroom. On the one hand are those educators who believe it our
responsibility to prepare students for technical skills they will
surely need for the workplace. In “Quo Vadis Technical
Communications?”, Sides (1994) argued long ago that our field work

Writing Infrastructures | Quigley et al

244

more closely with corporations to ensure our curricula addresses
industry needs, including technical skills like computer
programming. Indeed, today, in that employers increasingly favor
micro-credentialing over traditional degrees as a key indicator
determining future employee outcomes (Fong et al 2016, 3; Milligan
and Kennedy 2017, 3-4), universities and departments may need to
rethink how to incorporate micro-credentialing into their
curricula, or at the least, better ensure student competencies in
these hard and soft skills. Others in our field, Opel and Rhodes
(2018) for instance, are more skeptical of industry practices.
Working first from Katz (1992), Opel and Rhodes argue that
assimilation of industry practices like usability studies exposes our
students to the “expediency” and “efficiency” inherent in product
development (76). In their article, they argue instead for the kinds
of humanistic practices educators can bring to the classroom space
to disrupt industry ones like usability studies. Their critical
pedagogical framework, a “theory + play” approach derived from
Learner Centered Design (LCD) pedagogies, invites students to test
the creative fecundity and learning capacity in human + design
relations, modeling how we might view critical/technical tension as
a productive one (78-9). While their “theory + play” approach offers
students a space for making and learning, it won’t necessarily
prepare students working with UX (User Experience) methods
using the industry’s toolkit. Others in our fields have modeled a
third approach that employs critical pedagogy to improve industry
practices. Walton’s (2016) call to adopt the first principles of design
in technical communications provides an example of how we might
tread this middle ground. Echoing Buchanan’s (2001) similar call in
the field of Human Centered Design (HCD), Walton exhorts
technical communicators to first consider the dignity of the other—
those with whom we communicate directly or indirectly through
our designs. Both Walton and Buchanan before her draw heavily
on Kant’s second formulation of his categorical imperative, which
states that individuals should treat the other as the end rather than
a means to achieving an end, for otherwise, “everything has either
a price or a dignity” (Kant qtd. in Walton, 409). Recent scholarship

245 Reflections | Volume 22, Issue 1, Fall 2022

in other fields will surely inform our discussion and our field
moving forward. Costanza-Chock’s (2020) critique of HCD argues
that intentionality matters little if our processes do not labor to
right long-standing inequalities and inequities (77-8). While HCD
approaches leverage user insights and add to the prestige of the
professional design researchers and practitioners, Costanza-Chock
wonders how they benefit the user or redistribute power and
control to the communities they engage. Ultimately, Costanza-
Chock reminds us that we must do the work of establishing just
outcomes through just practices (40-1).

If we desire our teaching and research in TPC to inform industry
tools and best practices, then we should similarly investigate how
industry tools and best practices might inform our classroom
pedagogy. In the case of GitHub, we must explore critically,
exposing students to a variety of cases, tools, and methods, working
to navigate each situation justly. This will require a discussion of
digital redlining, a term Gilliard coined and defined as “Tech
policies, practices, pedagogies, investment decisions that reinforce
class and race boundaries” (Stachowiak 2016). Scholars in other
fields have incorporated GitHub into their classroom practices for
a variety of purposes, often in place of traditional Learning
Management Systems (LMS), to provide students with course
repositories and project management tools (Zagalsky et al 2015,
1914-5). Several scholars in our field have also employed GitHub in
their technical communications classroom towards a variety of
ends. Watson’s (Brewer, Grady, and Watson 2017) upper-level
technical communications course provides a model for integrating
technical skills into the technical communications classroom. With
the intention of providing exposure to technical skills used in
industry, Watson introduced his students to agile project
management, scrum, Markdown, Jekyll, Git, GitHub, and a primer
on API’s. Likewise, Duin and Tham (2019) offer useful
considerations and examples for refitting an upper-level technical
communications course that introduces students to Darwin
Information Typing Architecture (DITA), Extensible Markup

Writing Infrastructures | Quigley et al

246

Language (XML), Hypertext Markup Language (HTML), and
Cascading Style Sheet (CSS). Over the course of this
implementation, Duin and Tham encouraged students to compose
technology narratives reflecting on personal interactions with
technology. Rather than focusing wholly on “code literacy,” which
they define as “code,” “tool,” and “structure” (45), Duin and Tham
enlarge their praxis to address Vee’s concept of coding literacy (55),
the “socially situated, symbolic system that enables new kinds of
expressions as well as the scaling up of preexisting forms of
communication” (Vee 2017, 3). While these scholars make a strong
case for technical skills/code literacy in upper-level courses, we
must also consider how TPC educators might establish these
literacies in introductory TPC courses. Like Duin and Tham (2019),
we believe Vee’s (2017) concept of coding literacy may offer
opportunities for such an ingress.

For many of those in our field, the technological component in
what Cargile Cook (2002) refers to as our “layered literacies”
consists largely of our ability to interact with computers through
user interface (UI) design. Robinson et al’s (2019) study of the digital
practices of some 328 educators in the fields of Writing and
Communication supports this claim in that the words “code” and
“coding” are not mentioned in their report. Instead, their study
points to a reliance on drag-and-drop website tools like
SquareSpace, Wix, Weebly, and WordPress (2). Luckily, Vee’s
(2017) coding literacy framework provides us with a simple starting
place for addressing these literacies and reminds us that we are
already using code all the time—typically through a user interface,
but programming and writing code all the same. Rather than
viewing writing code or programming as learning a new skill,
perhaps we should look to strategies that are more akin to
unconcealing, as Vee suggests, what we are already doing when we
interact with digital tools. Other factors that we might associate
with coding literacy include a sense of confidence in knowing how
code works, participation in local and remote discourse
communities, and lastly, the development of rhetorical awareness

247 Reflections | Volume 22, Issue 1, Fall 2022

and rhetorical agency. Beyond these categories, Byrd’s (2019)
research suggests other factors that may encourage coding literacy,
even those not directly related to technology, including specific
incidents, objects, and relationships that might favorably position
an individual in relation to technology. In the following section, we
offer an introduction to GitHub as a platform, site of analysis, and
potential TPC teaching tool for scaffolding coding literacy.

Introduction to GitHub

GitHub provides server space for storing different versions of
software and integrated Git-based tools that developers use to track
changes in documentation, thus ensuring that one individual’s
contributions do not overwrite another’s. In some ways,
collaborating in GitHub using Git version control is akin to working
remotely with a partner on a Google Doc. Like Google Docs,
collaborators in GitHub can suggest changes and even overwrite
one another depending on the preconfigured settings. But unlike
Google Docs, individuals do not collaborate in realtime. Instead,
individuals either work on different branches of the same project
or on the same branch while negotiating a tightly controlled system
of protocols designed to prevent one individual from overwriting
another. Linus Torvald, a leader in the free and open-source
software movement, invented Git version control in 2005 to enable
teams of individuals working remotely to collaborate in the
development of the Linux kernel, the underlying program that runs
the Linux Operating System. In addition to GitHub, a number of
other companies, such as GitLab, Bitbucket, and SourceForge,
provide similar software development platforms offering
comparable repository space and Git version control systems.

GitHub users access GitHub in a variety of ways. The majority write
Git commands using the command line on their local computer,
sending instructions to both their local computer and the remote
GitHub server. Due to the high bar of writing Git in the command

Writing Infrastructures | Quigley et al

248

line, GitHub provides simple Git functionality integrated into their
website’s user interface, desktop app, mobile phone app, and even
Atom, GitHub’s code editor. Along with Git version control, GitHub
furnishes other developer tools to manage a wide range of
permissions, govern how individuals contribute, facilitate
communication, organize scrums and sprints, and automate
continuous integration. GitHub provides a variety of affordances
for repository owners to control the levels and kinds of interactions
they maintain with other contributors working within their
repository. While some GitHub repositories are kept private, the
majority of repository owners adopt a free and open-source
philosophy to writing and maintaining code online. Each
repository is owned by either a single individual or by a group of
users, and at any point, depending on the permissiveness of a
software license, any other individual within the GitHub
community can copy that software to a new repository and develop
it further, either individually or with a new set of collaborators.

We should note that while open-source development ensures that
individuals can view the code that runs a given software, and even
run and modify the code on their own computer, open-source does
not denote that a software is “free.” To the contrary, the licensor of
an open-source software determines the level of software licensing,
which varies by permissiveness, conditions, and limitations. Some
versions of free open-source software licenses, such as Public
Domain, MIT (Massachusetts Institute of Technology), and BSD
(Berkeley Source Distribution), are highly permissive, but others
like GPL (General Public Licenses) require more of the user,
including sharing and stating local changes with the larger
opensource community under a practice referred to as copyleft
(Stallman 2009, 91-2). While sites like GitHub aid in the distribution
of open-source software, they are especially useful for GPL
software development communities because they allow any
individual the freedom to examine the full history of a given
software, both changes to that software at its source and instances
of branching development performed by other users downstream.

249 Reflections | Volume 22, Issue 1, Fall 2022

For example, at the time of this publication, the WordPress
development repository on GitHub
(https://github.com/WordPress/wordpress-develop) had some 42
development branches within the repository, each with its own
changes made by 74 repository contributors, but also another 1,000
forked repositories downstream, each with its own owner(s),
development branch(es), and development practices, the sum total
of which may be inspected by any user at any time, in compliance
with the original software GPL licensing.

Large corporations, like Adobe, Amazon, Facebook, Google, and of
course Microsoft, also leverage GitHub open-source repositories to
develop software. By doing so, these companies stand to benefit
from non-employees who make contributions to improve or
customize a given software following the theory of lead-user theory
(Von Hippel 1986, 792-8). According to this theory, customers,
rather than product developers, provide the most significant
product innovations. Thus, the companies that nurture user
innovation stand to gain from both existing product iteration and
new product development. Companies that implement what has
become known as lead-user innovation methodology will also
profit from resources that would have been traditionally reinvested
in research and development. Brackets, Adobe’s code editor
development project, provides a good example of this kind of
product development model. Adobe built the basic functionality
for Brackets (including a code preview toggle that made the editor
extremely popular) and then permitted users to create
development plug-ins and other add-ons to further customize the
editor. While Adobe eventually abandoned the product, they
gained insights into design and customization that sped up their
product development timeline and could possibly have led to
innovation in other product areas.

To facilitate network interaction, GitHub leverages elements of
social media to help repository owners better showcase their
projects, circulate content, and attract user contributions. GitHub

Writing Infrastructures | Quigley et al

250

incentivizes these user contributions by tracking them, graphically
displaying total contributions over time on the user profile page,
and by keeping running tabs of all contributors on the repository
page. Contributors participate on other GitHub users’ projects for
a variety of reasons: to learn about and develop software, to work
in direct or adjacent collaboration, and sometimes just to show off
their skills to the larger GitHub community. Dabbish et al (2012)
note the transparent design of GitHub’s track change and
commenting process contributes a great deal to whether and how
individuals interact with one another within repository spaces. As
regards to the social nature of GitHub, their study cites “attention
signaling,” praise from fellow contributors in the feed, and “action
signaling,” problems that arise in the feed that need action, as major
drivers for user contributions (1281-2). The public nature of writing
code in an open-source community combined with the comment
feeds in GitHub can result in a highly competitive, if not toxic,
environment. As a result, GitHub encourages repository owners to
establish clear guidelines directing how work gets accomplished
within their repository, including statements on inclusion and rules
governing interpersonal communication. Still, as Prana et al (2021)
note, only 10% of the most popular open-source repositories
employ a code of conduct, a statistic that should broadcast a greater
call to justice (12).

GitHub presents itself as a meritocracy, a networked marketplace
connecting individuals similarly interested in developing software.
But we should actually see GitHub as something more complex: an
environment where corporations and individuals stand to profit in
various ways through their own labor and the labor of others with
whom they collaborate directly or adjacently within the GitHub
network. Words like “profit,” “marketplace,” and “labor” should
recall Bourdieu’s (1986, 16) four forms of capital. While GitHub
provides a space where individuals can develop their habitus and
accrue different kinds of capital (economic, cultural, social, and at
times symbolic), we should also acknowledge the inequalities and
inequities that contribute to and are made manifest by these

251 Reflections | Volume 22, Issue 1, Fall 2022

systems and structures. Costanza-Chock (2020) notes the inherent
injustice of corporations employing lead-user innovation to benefit
from user contributions, especially in that these corporations do
not directly engage with “race, gender, class, or axes of structural
inequity” (79). We must also recognize the large number of
individuals who either lack access to GitHub or may be limited by
other factors. Prana et al (2021, 11-12), for example, report a
consistently large gender gap in GitHub contributors across all
regions of the globe. Their study cites toxic work environments and
lack of project infrastructure as contributing factors. These
researchers offer recommendations to address the inequities in
how GitHub values contributions and the inequality often
engineered into project infrastructures, including increasing the
number of repositories with codes of conduct, providing
inrepository mentoring for women, and offering more recognition
for female contributors. They also suggest GitHub automate
information distribution and tasks like document and developer
assignments to increase access and ensure a more equitable
distribution of opportunities (12-13).

Since its launch in 2008, GitHub has grown into a robust
collaborative writing infrastructure attracting some 73 million users
merging over 170 million pull requests per year (GitHub 2021).
Though GitHub is free to most users, the site has managed to net
some US $300 million in 2018, the same year Microsoft bought it for
U.S. $7.5 billion. As GitHub continues to grow in popularity, the
platform has created shifts in not only how work gets done, but how
employers hire. Computer science researchers suggest that a
candidate’s GitHub repositories and code contributions could
provide employers a better assessment of skills than resumes or
recommendations (Saxena & Pedanekar 2017, 299-300). Because
GitHub also provides a primary site where technical writing gets
done, our field should closely consider these findings and
determine if this data warrants adjustments to our own classroom
practices. In the next section, we make the case for GitHub as a

Writing Infrastructures | Quigley et al

252

platform for collaborative writing assignments in the introductory
TPC classroom.

Collaborative Writing Projects in GitHub

Because introductory technical communication courses attract a
variety of students coming from different majors, fields, and
frameworks, each with different skills and interests, collaborative
writing projects in these classes can provide dynamic learning
opportunities for students. In addition to developing coding
literacy, such assignments can encourage students to dream big as
they work together to solve problems and make an impact.
However, one frustration associated with collaborative projects is
their tendency to be one-off projects. For example, a group of
students will put in a great deal of time into a project, the course
ends, the students move on, the project dies. Another frustration
with such assignments is that students tend to create the same
kinds of projects semester after semester, each group starting from
square-one, reinventing the wheel.

What if instead, we began to think about the benefits of free and
open-source philosophy and tools like GitHub? What if student
projects didn’t just die off at the end of the semester? Maybe instead
of only focusing on developing project deliverables, we focused
more on project infrastructure and growing long tails. Though the
concept of long tails goes back to a 1946 paper identifying a logical
fallacy or heuristic in statistics (Brown and Tukey), Wired
Magazine’s editor-in-chief Chris Anderson (2006) popularized the
term while explaining how shifts in online business strategy were
extending the life of products and revolutionizing the digital
economy. Anderson recognized the key factors in long tail products
and provided examples of companies like Netflix and Amazon who
relied more heavily on sustaining customer relationships and
extending the life of their product than selling individual products
one-off at a point-of-sale. Anderson notes that while the initial sales

253 Reflections | Volume 22, Issue 1, Fall 2022

profit for a given product may be high, a video game for instance,
the aftermarket purchases, mods, and updated versions often result
in graphs in which the total size of tail profit may dwarf that of the
head (20-26).
The concept of long tails also has implications and applications for
the work we do in the TPC classroom. When we encourage
students to construct projects that are by nature free and
opensource, when we encourage modularity and strong
documentation detailing project goals, expectations, and
development, then student work starts to grow long tails. As a
result, students in subsequent semesters can then fork the work of
others, perhaps choosing to continue working on the same problem
or choosing to adapt the design to solve new problems. Either way,
the work goes on, one way or another, sometimes in form,
sometimes in kind and content, from one semester to the next. In
the case of a project named Virtual Advisor, which will be
referenced in more detail later in this paper, subsequent groups
augmented and refined what a prior group had accomplished,
while others still, refitted the project, or parts of it, for other
purposes.

Before students embark on project development, they should
consider the ethics and implications of their project designs for a
wide range of individuals within our classroom and without. Who
is this project for? Who gets to design it? What are the power
dynamics by which this design might come into fruition? To what
degree does this project implementation constitute cultural
appropriation? If we wish to promote design justice through our
design pedagogies, each of us should consider the principles of
design justice (Costanza-Chock 2020, 190-204). Rather than
focusing wholly on product, we should stress the importance of a
product architecture that seeks external contributions more
aligned with design justice principles emphasizing process over
product. Doing so requires students to draft policy, including
ReadMe’s, inclusive documents, codes of conduct, licensing, and

Writing Infrastructures | Quigley et al

254

other documentation that will encourage open, inclusive, fair, and
ethical practices.

In addition to learning about project development, collaborative
projects provide an opportunity for students to develop project
management skills aligned with the principles of design justice.
Duin et al’s (2017) work extends the concept of radical collaboration
(Hamm 2008; Simons, Gupta, and Buchanan 2011) by presenting a
model for managing the stages of collaborative ideation based on
mutual respect. Counter to other hierarchical project management
philosophies, Duin et al’s radical collaboration resists roles
initiated by power dynamics and instead prioritizes “visibility,
curiosity, empathy, and open mindsets” among members (67).
Thinking along with Pope-Ruark (2015), I wondered how students
working together in non-hierarchical settings towards similar ends
may benefit from exposure to scrum strategies that emphasize
communication and accountability. To this end, we encourage
educators to incorporate field texts written by technical
communications practitioners in that they provide fodder for
discussion. Gentle’s Docs Like Code (2017) and Gales’ Product is
Docs (2017) offer narratives describing collaborative teams working
synchronously and asynchronously in industry. While industry
methods may contrast with our classroom practices, they do
provide juxtaposition and thus a point of discussion to assist
students in forming their own ideas about how work should get
done beyond the classroom.

Scaffolding Code Literacy

The following assignment cycle offers a model for scaffolding code
literacy in the classroom. Rather than focusing on technical skills
per se, this assignment cycle attempts to infuse code into the kinds
of assignments we were already doing in the TPC classroom,
including introductory icebreakers, writing product directions,
building professional portfolios, and making project pitches.

255 Reflections | Volume 22, Issue 1, Fall 2022

Assignment #1 Electrate Fuego - In prior years, students in my
“Intro to Technical Writing” classes would have begun the
semester by producing an Adobe Spark webtext to communicate a
little about themselves, their interests, their coursework, and their
field. Adobe Spark provides a web-based drag-and-drop user
interface for building webpages. Students can quickly build
content by writing text, adding pictures, and a range of other media
content. Adobe Spark employs a range of parallax scrolling effects
to add animation to their webtext. While attractive, the program’s
simplicity negates its educational value. As an alternative, we used
a webtext generator called Electrate Fuego. This program, based on
Open Fuego coding pedagogy, uses code templates with hidden
code comments that can only be viewed once the student opens the
file using a code editor. While the code comments provide students
with instructions on how to add content to the webtext, they also
offer informative information explaining what different parts of the
code are doing. Such comments convey essential computer science
knowledge like HTML, CSS, and File Management. For example,
they might explain what each line of code in the document <Head>
is doing and why students need to pay attention to file types and
naming conventions. By working through the content, students
also develop aspects of computational thinking (Wing 2006). For
example, when students read through the code, they will begin
noticing patterns in how the code is written using open <> and
closed </> symbols (pattern recognition). They will also learn how
CSS is used to assign attributes pertaining to a <div class> in HTML
(abstraction). They will similarly learn the necessary parts and
steps needed to create and circulate a webtext (algorithmic
thinking). Finally, the more students work with code, the more they
will begin to interact with other webtexts and consider how code is
used to facilitate their design (decomposition). This assignment
also requires students to think about creating content that is
inclusive and accessible so as to avoid digital redlining. Students
must ensure that images contain alt descriptions and are sized to
accommodate areas with slow internet speed, and test content to

Writing Infrastructures | Quigley et al

256

ensure it scales across media in that the majority of users access
web content solely through the use of cell phones (Pew 2021).

Assignment #2 Directions in Markdown - Students tasked with
writing directions in intro to technical writing classes have little
trouble imagining their intended audience. This fact, coupled with
the constraints of writing short sentences, provides students an
excellent opportunity to hone their usage and mechanics skills
while keeping the user in mind. These assignments can also be
easily adapted into code learning opportunities by requiring
students to write their directions in Markdown and publishing
their files in GitHub. Markdown is a lightweight markup language
that formats text for viewing in browsers. John Gruber (2012)
developed Markdown in response to more difficult markup
languages, in what he hoped would be a simpler way to create both
human and machine-readable texts. The language employs a
limited range of symbols and simple syntax to arrange and style
user content. Markdown provides affordances for creating
standard notation, bulleted points, block text, links, text alignment,
and use of bold, italic, and underlined fonts. Creating a level H1
heading is as simple as adding an asterisk (*) and space prior to a
line of text. An H2 heading uses double asterisks (**) and a space.
Clearly, Markdown achieves its simplicity through design
constraints. Students use code editors to write and edit their
documents, and then host them as a README.md in a dedicated
GitHub repository. In this case, students do not need to deploy
GitHub pages because GitHub repositories are designed to
automatically display a README.md when a user opens the
repository link. Along with giving students an opportunity to hone
their technical writing skills, this assignment provides students
with an additional opportunity to see the connections between
writing code and viewing it on a browser. Each of these activities
requires the student to think deeply about their user’s needs and
experience.

257 Reflections | Volume 22, Issue 1, Fall 2022

Assignment #3 Bootstrap Website - Once students learn to work
with code using Open Fuego, they can easily learn to use other
common CSS systems for writing HTML. Working with common
CSS libraries like Bootstrap CSS and W3 CSS ensures that students
are designing their documents while following design best practice.
Black Rock Media, a web design group, designed Bootstrap to
standardize their development methods. Rather than writing new
CSS pages for each of their clients, the design group could defer to
pre-designed attributes. Again, the importance here lies in
standardizing best practices for usability and accessibility. Students
in this “Intro to Technical Writing” course use a basic Bootstrap
template to assemble a professional portfolio. To get started, they
select and download a template from Startstrap.com, a free source
for basic Bootstrap websites. From here, students must learn how
to read through the various files to activate modal windows, email
contacts, and other features available in Bootstrap. If students wish
to add content, they can find Bootstrap code templates from a
variety of sources and help from sites like W3 and Stack Overflow.
Rather than hosting their site on GitHub, students in this “Intro to
Technical Writing” course are encouraged to host their site on the
university’s LINUX server. This requires students to use a file
transfer program either native to their Windows OS, or in the case
of Mac OS, using a file transfer protocol (FTP) client such as
FileZilla. Through this activity, students learn how to create
directories and subdirectories to host multiple websites and texts
on their university server-space with the added benefit of a
university URL.

Assignment #4 Project Proposal - This group assignment requires
students to work together in GitHub to design content for a group
presentation. Students use Open Fuego’s Elevator Pitch Generator
to create a multimodal communication document to pitch their
projects. Students work through a template to answer the four
questions of stasis theory: conjecture (what is it?), definition (what
will it do?), quality (why is it important?), and policy (what action
will we take moving forward?). Because the parts can be easily

Writing Infrastructures | Quigley et al

258

separated, students often divide the content between the different
group members. Students learn quickly that they must either use
Git to control the content they add to their repository or risk
overwriting changes made by other group members.

Project Implementation

Once students have learned the basics of web development and
GitHub, they are ready to learn more about working on teams using
project management strategy to develop open-source product
deliverables. Each student pitches a web-based product idea and
tries to recruit a team of 3-5 students. Projects can be original or
variations of projects initiated in other semesters. Each product
concept must be vetted in terms of its usability, feasibility, and just
process/intentions. These projects can range in kind from training
manuals to online guides to tools for queuing or finding a mentor.
Some ideas take, others fail to garner support. Once students have
enlisted help, they embark on a two week sprint (2-3 scrums per
week) to develop a web-based product and product infrastructure.
Students open a GitHub repository and divide and designate work
for the next scrum using their project Kanban board. Often
students will divide into roles (back-end developers, front-end
developers, and technical writers producing web content and
supporting documentation) but are encouraged to change roles
from scrum to scrum depending on project need. Throughout the
project, students are encouraged to follow our classroom best
practices for project management and must complete mid-project
and final project self-evaluations. Students are also responsible for
writing product documentation in Markdown to support product
development. These documents include a README statement—a
document that provides collaborators with software description,
instructions, version history, etc. Students must also use Markdown
to establish a license, a Q&A or wiki to troubleshoot software
problems, an inclusivity statement, and any other documents
intended to facilitate a fair and equitable writing infrastructure.

259 Reflections | Volume 22, Issue 1, Fall 2022

To illustrate project implementation and highlight student
experiences and perspectives, we now share narratives from three
student projects.

Project Narratives

Pitt Virtual Advisor - Samantha Whelpley

During the Fall 2019 semester, my Technical Writing group worked
on a project called Virtual Advisor. The proposed application
would aid University of Pittsburgh students in planning and
registering for classes. Ideally, it would integrate with the existing
PeopleSoft Course Registration system and create a
communication platform for students to ask others about specific
courses and schedules for each major. After future development by
each school within the University of Pittsburgh and their respective
advising departments, the web application could easily connect
students with resources about course selection across all parts of
the university. These resources would include University
guidelines and recommendations as well as advice from students,
which would be provided through forums.

Figure 1. Virtual Advisor easily integrates with current registration
software.

Major Requirements
This is the checklist for both Public and Professional Writing and for the A&S Requirements.

What this checklist is
This checklist allows you to keep track of your progress through the Dietrich School

of Arts and Sciences and the Public and Professional Writing Major. This is done by:

• Sectioned list that describes what each section keeps track of
• Toggleable checkmarks for each part of the section, which determine if you have completed

the requirement

• Example classes that complete the requirement are present below each section.

Writing Infrastructures | Quigley et al

260

We created this project using the features of GitHub and its version-
control capabilities. GitHub allowed the four of us to see each
other’s code and easily merge it together. Some of the key ideas
around using this approach were creating a branch for each person
to develop individually and making sure to continuously pull other
people’s finished work from the remote repository to their local
machine.

Out of the four people in the group, I was a Computer Science
major, two other members were engineering students, and the
fourth student was a Public and Professional Writing (PPW)
student. This brought together students with a variety of skill sets.
Even though all of us had some exposure to code in this class or
prior to it, I was the only one with actual GitHub experience. By
sharing Git and version control best practices with the group, we
were able to work collaboratively on a project with ease. GitHub is
a great version-control and collaborative tool because of its various
user interfaces. GitHub has both a web GUI and a Command Line
Interface for pushing and pulling changes to and from the
repository. This allowed the different members of the group to use
what was most comfortable and convenient for them.

We split up the work by each of the main three pages so that
everyone could contribute to the code. The PPW student also
greatly contributed to the content of the site. The site in its current
state can be found at Virtual Advisor (sjwhelpley.github.io). Not
only does GitHub allow for easy collaboration between group
members, but it makes deploying and sharing projects simple and
free. Since the initial version, other groups have reworked the tool
in newer versions, expanding documentation and improving
usability and accessibility.

ideaHub - Esther Lui

Using GitHub as a central platform for sharing information and
resources, our team developed an expanded, web-based version of

261 Reflections | Volume 22, Issue 1, Fall 2022

the elevator pitch generator. We were first introduced to stasis
theory as an invention tool in Dr. Stephen Quigley’s “Introduction
to Technical Writing,” where the ideaHub project began. Our team
of three envisioned ideaHub as a fully functional and responsive
web application that would not only allow university students to
come up with well-developed project ideas, but also serve
additional functions like creating greater inclusion through team
member recruitment, pitch browsing and filtering, as well as
making connections with sponsors and mentors.

Each of the three members on our team came from varying
academic backgrounds and levels of experience. Two on our team
studied computer science, one with extensive practical experience
with software engineering. The third member majored in
professional writing, with some exposure to UI design and frontend
web development. Accordingly, we determined what roles were
needed — software developer, technical writer, and designer,
respectively — often with overlapping tasks requiring handoff and
close collaboration. GitHub was useful in these circumstances to
keep track of which elements were contributed by which member
as well as to maintain version control.

From the ideaHub landing page, users first create an account. From
there, students can immediately create a project pitch. In line with
the four stases of conjecture, definition, quality, and policy, we
developed a pitch developer tool that features these four question
types. Each question was further adapted into more colloquial
language and broken up into sub-questions for ease of
understanding. Next in this process, users are prompted to come up
with a name for their idea and are given the opportunity to add an
image and tags to their idea.

When users complete and upload their unique project pitch,
ideaHub adds student pitches to its database. From here, students
can now browse others’ ideas, filtering by school or institution, or
by searching for relevant tags (such as “healthcare,” “non-profit,”

Writing Infrastructures | Quigley et al

262

“statistics,” etc.). Clicking on an idea brings up its project pitch as
well as options to follow or apply to join that particular team.
When a student applies to join a project, the idea owner receives a
notification via email and can connect with the applicant to form a
new team.

Our team was successfully able to launch a functional ideaHub
prototype after the first scrum sprint that included fully functional
pages for pitch development, browsing other pitches, viewing a
user’s own pitches, as well as viewing “followed” pitches. The final
ideaHub site map is as follows in Figure 2.
 	

Figure 2. ideaHub sitemap displaying the hierarchy of pages

Ultimately, and perhaps most importantly, we hope ideaHub can
become a useful model for other developers to interact with in the
future. Because all project resources were housed in GitHub, it is
also accessible for anyone to pick up, repurpose, and re-imagine
any parts of the project for their own purposes. See the figure below
for a screenshot of the final project pitch database.	 	

263 Reflections | Volume 22, Issue 1, Fall 2022

Discover new ideas on ideaHub.
See one that seems interesting? Click on it, read about it, and either apply or follow it.

Fitterideasbyorganizationusingthedropdown

Undergraduate
Advisor Matching

Posted01-18-21 by
ideahub

Writing Programming

Psychology

.. ""
The University
Forum: Scholastic
Group Chat

PostedOl-18-21 by

Stress, Diet, and
Health Tracker

Posted 01-18-21 by
ideahub

Healthcare Writing

Programming

ideaHub

Posted 01-04-21 by
ideahub

Ski Application

Posted0t-04-21 by
testt

Programming

Marketing Non-profit

Covid-19 Databse

Posted01-18·21by
ideahub

Figure 3. The final layout of the “Browse Ideas” page, displaying a
database of all idea pitches.

Pitt Resource Finder - Joseph Flot	

Unified Pitt Resources sought to create a central hub which allowed
easy access and discovery of Pitt resources. Our group noticed
many students did not know of these assets or how to access them.
We attributed this lack of awareness to the departmental
segregation of resources. Engineers know of engineering resources,
but not of biology or liberal art resources. This reduces the
discoverability of tools and information accessible to all students.
We embarked on this project as a group with diverse backgrounds
of skill and experience. I had trepidations about working on a
project of this scale with four other people. I did not have much
experience with GitHub nor with coding. I felt I would not be able
to pull my weight with the skills I brought to the table.

To my surprise, this project was my most effective group
collaboration to date and taught me several lessons. First, the
diversity of skills I thought would leave me unable to contribute

Writing Infrastructures | Quigley et al

264

instead helped my own skills stand out. I could share my abilities
and learn more about their own by embracing the skills of my
peers. I learned the importance of proactivity. Before we began
working, we all agreed to a policy of clarity and open
communication. This meant that if someone had an issue, they
should tell the group and we would handle it as a collective. In
practicing this policy, we were able to maintain flexibility in the
workload distribution. This also kept one person from becoming
stressed or resentful towards another group member. We often
consider emotion last when working in a professional setting, but
when you work with humans, you must treat them like humans.

Pitt Resources
- Categories Alphabetical About Contact

Pitt Resource Hub

This is your guide to everything you have access to as a Pitt student!

Q. Search

Search for a resource, or browse available resources below.

Browse by category Browse alphabetically _J
Figure 4. Unified Pitt Resources searchable database.

The flexibility with roles also lent itself to learning outside of my
comfort zone. I served as the graphic designer but, when I had little
work to do, I helped with the web design as best I could. This ability
to share work between roles did not diminish the importance of
roles in the first place. Knowing who does what allows for a flow of
information to be established between group members. The coders
can ask me for a design, and I will pass that onto the coders and let
the document writers know of the change. I have learned that static
roles allow for the assignment of tasks ahead of time. At the
beginning of the project, the person who worked on the final
presentation knew two weeks ahead of time.

265 Reflections | Volume 22, Issue 1, Fall 2022

My individual role as a graphic designer taught me about creating
within technical constraints and ensuring accessible design. Much
of the graphics on the website are icons no larger than a postage
stamp. I appreciated the challenge of making a well understood
creative design under these restrictions. I noticed that researching
how others had overcome these challenges by looking at other sites
sped up the process. I also learned the importance of real time
demonstration in developing a design. On Zoom I could share my
screen and make a draft of a design and take suggestions as my
group thought of them. This cut hours off the drafting and revising
process a normal workflow might have. Designing many visually
similar graphics also forced me to rethink my personal drafting
process. In most circumstances, I am working on a single piece, and
no one will see any of the files. This leads me to have an erratic and
sometimes nonsensical naming scheme, though now I have a much
more organized naming process.

With more than a year having passed since this experience, I have
had several more group projects. Each of those benefitted from the
collaborative approach I learned here. Involving group members in
the iterative process of project completion and applying their skills
improves any sort of endeavor. Furthermore, having a group with
diverse skills and backgrounds empowers each of the members to
contribute their unique abilities. Learning to balance the rigidity of
roles with the plasticity of human experience makes for a more
creative problem solving. I hope to carry these lessons into my own
field of microbiology.

Discussion

Because technical writers often work in Git-based version control
writing environments like GitHub (Brewer et al. 2017, Gentle 2017,
Gales 2017), TPC educators should do more to introduce these
systems and technologies in their classrooms. To be clear, GitHub
is both vast and imperfect. The work of Prana et al (2021), for
instance, reveals that GitHub mirrors much of the inequity and

Writing Infrastructures | Quigley et al

266

inequality we see in the world. Yet GitHub provides a space for our
students to test how they might attend to the problems any
technology can bring to bear on both designers and users,
individuals and communities, and to explore more ethical and
equitable design practices that might result in more ethical and
equitable outcomes. As the above group project narratives
demonstrate, building open-source projects in GitHub requires
student groups to think carefully about how to create and sustain
inclusive work environments through both project documentation
and project management. The first is theoretical, the second relates
to practice. The concern for Costanza-Chock (2020) is what
happens next? While designing open-source projects may invite
participation and iteration, it doesn’t ensure design tools and
knowledge are equally distributed so that all may participate in the
design. To address this need, we will lastly share our ATTW
GitHub Workshop we designed to introduce individuals to GitHub
practices and workflow.

The ATTW GitHub Workshop

We designed an open-source GitHub workshop that anyone can
implement or adapt beyond our ATTW conference date or ATTW
community. Any individual who forks the repository may alter any
text or methods to suit their needs. They may also contribute to our
project repository by pushing changes to the main repository using
either of the two prescribed collaboration methods. Our workshop
intends to achieve three specific goals providing each
participant with an opportunity to learn why a modicum of code
literacy is essential for Tech Comm educators, how to scaffold code
literacy learning using GitHub, and finally, how to use GitHub
Pages, Git UIs, and GitHub workflows.

Method #1 Forked or InterRepository Collaboration - This method
allows individuals to collaborate between two or more repositories.
Individuals begin by forking an existing project repository to create

267 Reflections | Volume 22, Issue 1, Fall 2022

their own version of that product repository downstream. This
allows each user to make specific changes to their own software
while contributing changes to the original repository upstream.
While this version of collaborating on GitHub occurs
asynchronously, both individuals can benefit from changes made
in the upstream or downstream repository.

Method #2 IntraRepository Collaboration - This method allows
groups to work with collaborators within a single repository.
GitHub allows repository owners to designate different levels of
permissiveness for each collaborator. Regardless, each collaborator
can clone a repository using Git or GitHub desktop UI, make edits,
and commit changes. Designated members can resolve conflicts
and merge changes. Working within a single repository has other
organizational benefits. Teams can use a Kanban board to assign
roles and scrum tasks.

Best Practices for GitHub Group Work

For Teachers

• scaffold learning by including code literacy into everyday
activities

• let students take control of their learning
• encourage agile project management and product

development methods
• provide examples of good design practices
• provide resources, not answers
• promote design justice pedagogies and practices

For Students

● use GitHub desktop UI or learn Git (merely uploading
files overwrites others' work)

● assign roles
● distribute specific tasks
● write clear comments

Writing Infrastructures | Quigley et al

268

● make pull requests specific to task
● designate a merge master / or set commit privileges to

repository owner
● don't sit...COMMIT - make pull requests often / push

requests oftener.

GitHub / Code Resources

GitHub Guides - an excellent set of tutorials for GitHub learning.
Open Fuego - code tools designed to support the things we are
already doing in our classroom.
W3 - a wide range of code reference, tutorials, and a sandbox that
allows you to play with code.
Stack Overflow - Code questions and aggregated answers.
Sample Developer Team Workflow - a decade-old branching
model
GitHub Accessibility - view accessibility issues working with
GitHub.

269 Reflections | Volume 22, Issue 1, Fall 2022

References

Anderson, Chris. 2006. The Long Tail: Why the Future of Business
is Selling Less of More. New York: Hachette Books.

Brewer, Pam Estes, Helen Grady, and Robert Watson. 2017.

"Diverging Currents: Continuous Innovation in an
Engineering-Based Technical Communication Program." In
2017 IEEE International Professional Communication
Conference
(ProComm) IEEE (2017): 1-10.

Brown, George W, and John W. Tukey. 1946. "Some Distributions

of Sample Means." The Annals of Mathematical Statistics 17(1):
1-
12.

Bourdieu, P. 1986. “The Forms of Capital.” In Handbook of Theory

and Research for the Sociology of Education, edited by J. G.
Richardson, 241-258. New York: Greenwood.

Buchanan, Richard. 2001. "Human Dignity and Human Rights:

Thoughts on the Principles of Human-Centered Design."
Design Issues 17(3): 35-39.

Byrd, Antonio. 2019. "Between Learning and Opportunity: A Study

of African American Coders’ Networks of Support." Literacy in
Composition Studies 7(2): 31-56.

Cook, Kelli Cargile. 2002. "Layered Literacies: A Theoretical Frame

for Technical Communication Pedagogy." Technical
Communication Quarterly 11(1): 5-29.

Costanza-Chock, Sasha. 2020. Design Justice: Community-led

Practices to Build the Worlds We Need. Cambridge, MA: The
MIT Press.

Dabbish, Laura, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012.

"Social Coding in GitHub: Transparency and Collaboration in
an Open Software Repository." In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work: 1277-
1286.

Writing Infrastructures | Quigley et al

270

Duin, Ann Hill, and Jason Chew Kit Tham. 2019. "Cultivating Code

Literacy: Course Redesign Through Advisory Board
Engagement." Communication Design Quarterly Review 6(3): 44-

58.

Duin, Ann Hill, Megan McGrath, Jason Tham, and Nathan Ernst.

2017. "Design Thinking Methodology: A Case Study of ‘Radical
Collaboration’ in the Wearables Research Collaboratory."
Connexion: An International Professional Communication
Journal: 47-74.

Fong, Jim, Peter Janzow, and Kyle Peck. 2016. "Demographic Shifts

in Educational Demand and the Rise of Alternative
Credentials," accessed March, 2021,
https://upcea.edu/wpcontent/uploads/2017/11/Demographic-
Shifts-in-Educational-
Demand-and-the-Rise-of-Alternative-Credentials.pdf

Gales, Chris. 2017. Product is Docs. NP.

Gentle, Anne. 2017. Docs like Code. Austin: Texas. Just Write Click.

Gruber, John. 2012. Markdown: Syntax, accessed March, 2021,
http://www.daringfireball.net/projects/markdown/syntax.

Github. 2021. The 2021 State of the Octoverse, accessed May, 2022,

https://octoverse.github.com.
Hamm, Steve. 2008. "Radical Collaboration: Lessons from IBM's

Innovation Factory." Human Resource Management
International
Digest 16(2). https://doi.org/10.1108/hrmid.2008.04416bad.009

Katz, Steven B. 1992. "The Ethic of Expediency: Classical Rhetoric,
Technology, and the Holocaust." College English 54(3): 255-275.

Milligan, Sandra and Gregor Kennedy. 2017. “To What Degree?

Alternative Micro-Credentialing in a Digital Age.” Visions for
Australian Tertiary Education: 41-54.

Opel, Dawn S. and Jacqueline Rhodes. 2017. “Beyond Student as

User: Rhetoric, Multimodality, and User-Centered Design.”
 Computers and Composition 49: 71-81. DOI:

10.1016/j.compcom.2018.05.008

271 Reflections | Volume 22, Issue 1, Fall 2022

Pew Research Center. 2021. “Mobile Fact Sheet.” April 7, 2021.

https://www.pewresearch.org/internet/fact-sheet/mobile/

Prana, Gede Artha Azriadi, Denae Ford, Ayushi Rastogi, David Lo,

Rahul Purandare, and Nachiappan Nagappan. 2020. "Including
Everyone, Everywhere: Understanding
Opportunities and Challenges of Geographic GenderInclusion
in OSS." IEEE Transactions on Software Engineering, 2021.
(note: 2020 preprint) arXiv preprint arXiv:2010.00822.

Pope-Ruark, Rebecca. 2015. "Introducing Agile Project

Management Strategies in Technical and Professional
Communication Courses." Journal of Business and Technical
Communication 29(1): 112-133

Robinson, Joy, Lisa Dusenberry, Liz Hutter, Halcyon Lawrence,

Andy Frazee, and Rebecca E. Burnett. 2019. "State of the Field:
Teaching with Digital Tools in the Writing and
Communication Classroom." Computers and Composition 54:
doi: https://doi.org/10.1016/j.compcom.2019.102511.

Saxena, Rohit and Niranjan Pedanekar. 2017. "I Know What You

Coded Last Summer: Mining Candidate Expertise from
GitHub Repositories." In Companion of the 2017 ACM
Conference on Computer Supported Cooperative Work and
Social Computing: 299-302.

Sides, Charles H. 1994. "Quo Vadis, Technical Communication?"

Journal of Technical Writing and Communication 24(1): 1-6.

Simons, Tad, Arvind Gupta, and Mary Buchanan. 2011. "Innovation

in R&D: Using Design Thinking to Develop New Models of
Inventiveness, Productivity and Collaboration." Journal of
Commercial Biotechnology 17(4): 301-307.

Stachowiak, Bonni. 2016. “Interview with Chris Gilliard; Digital

Redlining and Privacy.” Teaching in Higher Ed. Podcast audio.
 December 8, 2016. 35:48.

https://teachinginhighered.com/podcast/digital-
redliningprivacy/

Writing Infrastructures | Quigley et al

272

Stallman, Richard. 2002. Free Software, Free Society: Selected
Essays of Richard M. Stallman. GNU Press.

Vee, Annette. 2017. Coding Literacy: How Computer Programming

is Changing Writing. Cambridge, MA: The MIT Press.

Von Hippel, Eric. 1986. "Lead Users: A Source of Novel Product

Concepts." Management Science 32(7): 791-805.

Walton, Rebecca. 2016. "Supporting Human Dignity and Human

Rights: A Call to Adopt the First Principle of Human-Centered
Design." Journal of Technical Writing and Communication
46(4): 402-426.

Wing, Jeannette M. 2006. "Computational Thinking."

Communications of the ACM 49(3): 33-35.

Zagalsky, A., Feliciano, J., Storey, M. A., Zhao, Y., and Wang, W.

2015. “The Emergence of GitHub as a Collaborative Platform
for Education.” In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing:
1906-
1917.

273 Reflections | Volume 22, Issue 1, Fall 2022

About the Authors

Stephen Quigley teaches technical communication and digital
media composition at the University of Pittsburgh. His research
interests include basic coding pedagogy and networked
infrastructure.

Esther Lui is a current MBA candidate at National Taiwan Normal
University where she researches barriers to effective knowledge
transfer for distributed software teams. She graduated from the
University of Pittsburgh with a degree in Chinese and Public and
Professional Writing.

Samantha Whelpley is a web developer at VISIMO and recent
graduate of University of Pittsburgh's School of Computing and
Information.

Joseph Flot is a microbiology major at the University of Pittsburgh
looking to specialize in the field of applied microbiology.

© 2022, Stephen Quigley, Esther Lui, Samantha Whelpley,
Joseph Flot. This article is licensed under the Creative Commons
Attribution 4.0 International License (CC BY). For more
information, please visit creativecommons.org

Writing Infrastructures | Quigley et al

274

